If it's not what You are looking for type in the equation solver your own equation and let us solve it.
490=4.9t^2
We move all terms to the left:
490-(4.9t^2)=0
We get rid of parentheses
-4.9t^2+490=0
a = -4.9; b = 0; c = +490;
Δ = b2-4ac
Δ = 02-4·(-4.9)·490
Δ = 9604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9604}=98$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-98}{2*-4.9}=\frac{-98}{-9.8} =+10 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+98}{2*-4.9}=\frac{98}{-9.8} =-10 $
| 1.12/12=3/e | | 3x+x-74+x-66=360 | | 1p-5=-8-2p-24 | | 2m+4+-3m=8(m-1) | | n+1.3=2.1 | | 114.95=6x+26.45 | | 1+2x=61 | | d-3/8=5/2 | | 2m+4-3m=8(m+-1) | | 113=-5x-6(-x-18) | | 180=7x-2+2x+8+27 | | -5x=+17=-13 | | 1+5m=-2+6m | | 15x=0.5x+40 | | 4/2x+2=-32/8x | | 11-3x=x-1 | | 4x+1.75=11.15 | | 50(x+2x+3x)=2100 | | (2^3n)^2=(2^n)^3(2^n+6) | | 2(8-3c)=-34+4c | | x^2+12x=-85 | | 3x-6x=8-5x | | 2m+4-3m=8(m-3)+4 | | 5x+5(-3x+16)=130 | | 0=1/3x^2-5 | | -3(-13+1.6667b)+5b+85-180=0 | | 5(x-4)=7(8-3x) | | 208=8(1+5x | | 16x+2x=72 | | 4+6=-5(2x-2) | | 3x-8=8x+4/3 | | 8w=4w-16 |